On a potential relationship between climate change and seismic activity of Earth, explained by a general model
Main Article Content
Abstract
Abstract. The scope of this paper is to investigate a potential relationship between the melting of icecap caused by the global warming and the seismic activity of Earth. The first step is the analysis of seismic activity data of the last decades, in order to establish if there is an ascending trend in the frequency or magnitude of the earthquakes, or to see whether this data exhibits certain features which could indicate a certain change in the pattern of the seismic activity of Earth. If there is an ascending trend in the seismic activity, the correlation with the amount of the melted icecap (expressed in both: square kilometers and tons) is to be further analyzed. If however, there is no such ascending trend but still, the data shows certain changes in its pattern, these changes will be analyzed and explained using the model proposed and presented in this paper. This general basic model describes and explains how reduction of pressure exerted by the melted icecap leads to a redistribution of gravity pressing forces on the earth’s crust and releases additional movement forces of the tectonic plates, thus causing an increased seismic activity.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Asaad, R., & Ali, R. (2019). Back Propagation Neural Network(BPNN) and Sigmoid Activation Function in Multi-Layer Networks.Academic Journal Of Nawroz University,8(4), 216. doi: 10.25007/ajnu.v8n4a464.[2] Zhang C., Zhang Z.A, (2010). Survey of Recent Advances in Face Detection.Microsoft Corporation; Albuquerque, NM, USA. TechReport, No. MSR-TR-2010-66.[3] 3.Ekman P., Friesen W., Hager J.(2002). Facial Action Coding System: The Manual on CD ROM.A Human Face; Salt Lake City, UT, USA.[4] Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatial-contextual information.European Journal of Remote Sensing,47(1), 389-411.[5] Kwon, O. W., Chan, K., Hao, J., & Lee, T. W. (2003). Emotion recognition by speech signals. InEighth European Conference on Speech Communication and Technology.[6] Schuller, B., Rigoll, G., & Lang, M. (2003, April). Hidden Markov model-based speech emotion recognition. In2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP'03).(Vol. 2, pp. II-1). IEEE.[7] El Ayadi, M., Kamel, M. S., & Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases.Pattern Recognition,44(3), 572-587.[8] Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion recognition in human-computer interaction.IEEE Signal processing magazine,18(1), 32-80.[9] Nwe, T. L., Foo, S. W., & De Silva, L. C. (2003). Speech emotion recognition using hidden Markov models.Speech communication,41(4), 603-623.[10] Busso, C., Lee, S., & Narayanan, S. (2009). Analysis of emotionally salient aspects of fundamental frequency for emotion detection.IEEE transactions on audio, speech, and language processing,17(4), 582-596